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We prove statistical properties of two-dimensional hyperbolic dynamical 
systems with singularities. Bunimovich, Sinai, and Chernov proved a theorem 
on the subexponential decay of correlations and a central limit theorem for 
billiard systems. In this paper we use their techniques to prove the same results 
for "abstract systems." 
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1. I N T R O D U C T I O N  

We will study statistical properties of two-dimensional smooth hyperbolic 
dynamical systems with singularities. We will obtain upper bounds for the 
rate of the decay of correlations and a central limit theorem. 

The (nonuniform) hyperbolicity of our dynamical systems is charac- 
terized by nondegenerate increasing quadratic forms. All the conditions will 
be given in terms of these quadratic forms and the evolution of singularities. 
Close to the singularities, we also introduce some relations between the 
measure and the pseudometric defined by the quadratic form. These rela- 
tions are a little more restrictive than those established for proving ergodic 
properties in our previous papers. (23'24) 

In this paper we suppose that the quadratic form is uniformly expanding 
on unstable directions (see Section 3.3). This condition simplifies some con- 
structions and evaluations. If this uniformity is not satisfied, a derived 
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map can be introduced. In this case the presence of new singularities must 
be studied. This was done, for example, in ref. 6 and 7 to study the same 
properties in the stadium. 

We work in the context of the book by Katok and Strelcyn t~4~ in order 
to use Pesin's methods for constructing invariant manifolds. Motivated by 
billiard problems, they imposed conditions on the derivatives of the maps 
near the singularities. 

We adapt the methods and techniques used by Bunimovich et aL C6'7) 
for some hyperbolic billiards to our "abstract" systems and obtain the 
same results. So the main results in this paper are generalizations of 
those obtained by the Russian school, using quadratic forms and condi- 
tions on the evolution of singularities instead of specific properties of these 
mechanical systems. 

The ideas behind the proofs of the main results and the previous 
literature on these topics can be found in the Introduction of ref. 7, 
especially pp. 50-52, and ref. 9. 

The fundamental method of previous investigations consists in the 
construction of Markov partitions with the subsequent reduction of the 
system to its symbolic representation as a topological Markov chain with 
finite alphabet. Roughly speaking, a Markov partition consists in a finite 
covering by parallelograms with sides parallel to unstable and stable 
directions of the map f. Almost every point y belongs to an element U(y) 
of the partition. U(y) and fU(f-~y) intersect regularly. Regularity and 
nonregularity of intersections are explained (dimension 2) in Fig. 1. 

Our dynamical systems are hyperbolic, and the hyperbolicity is close 
to uniform. But they are not continuous and the singularities eventually 
destroy the hyperbolicity, although hyperbolicity prevails over fractioning, 
and some ergodic and statistical properties can be proved. 

We studied ergodic properties of dynamical systems with singularities 
in refs. 23 and 24. In these papers we prove that the K-property is satisfied 
if some additional conditions are imposed. In these discontinuous systems 

u~ 

Fig. 1. Nonregular and regular intersections. 
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the elements of Markov partitions could have rather complicated shape: 
they can be nowhere dense, form totally disconnected sets of Cantor type, 
and their number can be uncountable (the symbolic system has infinite 
alphabet). 

This and other circumstances led Bunimovich e t  al. t7) "to work out a 
new approach to the investigation of statistical properties of billiard 
systems." They substantially simplified previous approachs "constructing 
the symbolic system more 'roughly,' but with finite alphabet. For this we 
introduce a finite family of subsets of M which have the Markov property 
during a definite finite interval of time .... This family of subsets does not 
cover all the phase space, hence we call it a Markov lattice" (Markov 
sieve). 

This construction allows one to prove conditions on strong mixing 
analogous to those studied by Ibragimov and Linnik t13~ and derive the rate 
of the decay of correlations. 

Our paper includes only this construction because the probabilistic 
proofs of the main theorems are exactly the same of ref. 7: they used the 
structure and mixing properties of the Markov sieve, but not its mechanical 
origin. 

We remark that one of the most important technical difficulties in the 
construction comes from the fact that we must use a kind of "local 
linearization" of the nonlinear dynamical system. A simplified use of the 
methods in refs. 6 and 7 is done in an interesting and clarifying paper by 
Chernov. 19~ In these papers the most interesting numerical results are 
reviewed. 

This paper is organized as follows. In Section 2 we describe the 
dynamical system and present some known results describing its hyper- 
bolicity in terms of quadratic forms. In Section 3 we introduce conditions 
that are sufficient to construct the Markov sieve and state the main results. 
Section 4 includes the definitions of the "minimal geometrical structures" 
and how to control their measures. In Section 5 we define the "local 
linearization" and prove some of its important properties. In Section 6 we 
study transitivity properties of invariant manifolds. Sections 7-9 are 
devoted to the construction of the Markov sieve; Section 8 includes the 
definition and construction of pre-Markov partitions. 

These generalizations of the theory created by Sinai, Chernov, and 
Bunimovich can-be applied to the investigation of statistical properties of 
other mechanical systems. These results are valid in other (nonuniform) 
hyperbolic billiards, taking a smaller phase space, defining a "new" derived 
map, and studying the relations between the "new" singularities. 

Chernov ~21 has studied the same statistical properties for various 
classes of functions. The bounds he has obtained (for example, on 
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correlations) are intimately related with asymptotic properties of certain 
types of partitions of the phase space. 

Recently, Liverani t~9) has studied and obtained results on the same 
problems using the Perron-Frobenius transfer operator. 

2. PHASE SPACE. Q U A D R A T I C  FORMS.  
I N V A R I A N T  M A N I F O L D S  

Our phase space and map are defined in order to apply the generaliza- 
tion done by Katok and Strelcyn of Pesin's theory (see ref. 14, I. l . l ,  and 
refs. 23 and 24). 

Let M be the union of a finite number of smooth Riemannian compact 
connected manifolds M~, m 2 ..... m s (possibly with boundaries and with 
angles) all of dimension d. Here p is the Riemannian metric and I]' 1] the 
Riemannian norm in TM. The boundaries of Mj are contained in S, the 
union of a finite number of C l-compact submanifolds of positive codimen- 
sion in M~ ..... M,.  The set N =  M/S is an open subset of M, and/~ is a 
probability measure on M such that its restriction to N is absolutely con- 
tinuous with respect to the volume measure 2 induced by p (/~ = h2, where 
h is a bounded function). It is obvious that ~t(N) = 1. 

Let f :  N ~  M be a Cr-diffeomorphism (r 1> 2) between N and its image, 
+ o o  n which preserves the measure/~. If H =  0 . . . . .  f N, it results that ~z(H) = 1. 

We suppose that f can be extended as a C"-function to S + and that f - 1  
can be extended as a C-function to S o. The sets S~ = S are C l compact 
submanifolds and fl,g and fl~'~ are Cr-diffeomorphisms. We define 

S , , = { f " x ~ N : x ~ S + } ,  n > 0  

S _ , , = { f - " x e N : x e S o } ,  n > 0  

We will write So instead of S~ if they are associated to S_+_,,, n > 0 ,  
and there is no confusion. The set of singularities o f f  is S + u S o. The dis- 
continuity sets o f f  a n d f  -~ are respectively contained in S O and S~-. 

Then, the discontinuity sets o f f "  ( f - " )  are contained in S , , + ~  
(S,_t) .  For m<~n, let be S . . . .  =SmuSm+ 1 u " ' "  k . . ) S  n .  

If expx: T,.M---, N, x EN, is the exponential map defined on 

{ u ~ Tx M: II u II < min { d(x), radius of injectivity of x in M} } 

we define fox=exp~lofoexpx.  It is well defined in a neighborhood of 
0e  T~M. We will suppose that f satisfies the following condition concern- 
ing its growtht14): there exist c~> 1 and b >  1 such that ]ld2fo.,~(h)ll < 
c[d(exp h ) ] - b  for h in a small neighborhood of 0 c TxM. We remark that 
the second derivative is a map between linear spaces. 
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We will assume also that log + [l(f+-l)'ll~Ll(H,l.t) ( l o g + s =  
max{logs, 0}), a condition that is needed to apply the ergodic multi- 
plicative theorem of Oseledets. 

We say that x is a regular (Oseledets) point of f if there exist numbers 
21(x)> ... > 2 , , ( x ) a n d  a decomposition TxM=E~(x)~3 ... ~3E,,(x)such 
that 

lim 1 log II(f ')" wll = L(x )  
n ~  + o o  n 

for every 0 ~ w E E~(x) and every 1 <<. i <<. re(x). Eg(x) is the proper subspace 
of the Lyapunov exponent 2;(x). Z = L ' ( f )  will denote the Pesin region, 
that is, the set of regular points that have only nonzero exponents. If 
p (* )  = 1, we will say that the map f (or the dynamical system defmed by 
it) is (nonuniformly) hyperbolic or has chaotic behavior. 

The function Q: T M ~  • is a quadratic form on U c M if 
Qx: T , . M ~  ~ is a quadratic form in the usual sense for each xeU.  If 

f :  U ~  U is a C ~ map, we denote by f '~Q (pullback of Q by f )  the 
quadratic form (f'CQ)xu=Qfx(f',~u), ueT,~M. The quadratic form Q is 
nondegenerate on a subset U c M  if Q~ is nondegenerate for every x e  U, 
that is, if the associate matrix of Qx in any base has nonzero eigenvalues. 
Q is positive on U if Qxu>O for every x~  U and every nonzero u~ TxM. 

For any quadratic form Q on the corresponding half orbit of x ~ M we 
define 

S~ = {u �9 TxM: Q(( f ' ) '  u) < O, n >1 O} 

U~= {ue TxM: Q(( f ' ) '  u)>O, n~<O} 

For x e Z ( f )  let 

Ex= ~ Ei(x), " -  s E.,.- ~ Ei(x) 
2 i ( x )  < 0 2 i ( x )  > 0 

We have proved (z~ the following theorem establishing conditions 
for the existence of (nonuniform) hyperbolicity in terms of quadratic forms. 

2.1. T h e o r e m .  Let Q: T M ~  R be a quadratic form such that: 

(i) Qy depends continuously on y, and is nondegenerate, on [~. 

(ii) P y=  ( f # Q -  Q)y is positive for every y e N .  

Then p ( s  1, Sx=E~, Ux=E~, and they depend continuously on 
x~2~cH.  
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2.2.  R e m a r k s .  (a) The main results can be obtained with 
measurable Q on M of any dimension. In ref. 22 it is proved that  the 
existence of such Q gives a characterizat ion of (nonuniform) hyperbolicity. 

(b) A slightly stronger version of Theorem 2.1 can be proved in the 
same way; instead of condition (ii), we assume that  P is eventually positive. 
P ~> 0 and for almost  every x s H there exist k s N such that  

Q((fk+I) ,  u) -- Q((fk) ,  U) > 0 for every nonzero u e Tx M 

2.3.  D e f i n i t i o n .  For  every x where Q is defined, and b > 0, 

Cx+b__ {u e TxM: Oxu > b Ilull 2} 
C x b = { u e T x M :  Qxu< - b  Ilul[2}, C~ = c ~  ~ 

For  every cone C, clos C is the union of C and the vectors in its boundary.  
These cones satisfy 

Cx + = Ux, C ;  = Sx, c lo s ( f '  Cx + ) c C f  

2.4.  D e f i n i t i o n s .  If  Q,. is defined, let lul=lQ.~ul I/2 for every 
u e T ,M.  This pseudonorm satisfies 

[f~,u[ > lul for every u e C, + 

[f'xs[ < Isl for every s e C x 

For  any Cl-curve  cg in M defined by c : [ t l , t 2 ] - + M ,  let l(Cg)= 
~,2j [Qc,~(c,(t))[I/2dt. This length allows us to define a pseudometric a 
induced by 1. [ in M. 

The Riemannian length is given by 

f t t2 p(~ )  = IIc'(t)ll dt 
l 

2.5. Relat ions B e t w e e n  the Riemannian and / -Lengths.  
Then, we have that  

p(~)  ~- ( t 2 - t l )  IIc'(to)ll with toe  [ t , ,  t2] 

l(Cg)~--(t2--tl) IQ,,(c'(7))l '/2 with ? ' e [ t  l, t2], 

I f  ~ is a "short" curve ( t 2 -  t~ ~ 0), it results that  

l(Cg) [Ic'(t~)ll 
p(C#) _~ IQx(c'(ti))] 1/2" x = c ( t l )  

c(7) = y e M 
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Finally, if vx is the unit tangent vector to cr at x, vx=c'(tl)/llc'(t~)ll, we 
have that 

l(Cg) 
p ( ~ r  _ 

IQ,Av.,31 '/z 

2.6. LUMs and LSMs. Pesin's construction of local invariant 
manifolds can be applied if the conditions of Theorem 2.1 are satisfied at 
almost every point of x~.S. See refs. 25 and 14 and ref. 24, w for a 
compact version of results. 

Now, /z-almost every point x ~ M has a local unstable manifold 
(LUM) yU(x) and a local stable manifold (LSM) yS(x), both passing 
through x such that their tangent spaces are TxyS(x)= Sx, TxyU(x)= Ux. 
Due to the singularities these submanifolds can be small (in the Riemannian 
sense; if dim M =  2, they are short) and there are plenty of arbitrarily small 
LUMs and LSMs throughout M. In particular, if Oy~(x) is a smooth part of 
the boundary of yS(x), then 

f"(Oy~(x))cS o for some n>~O 

For each x EZ there exists a neighborhood U(x) such that: 

(a) yS(y), yU(y) are uniformly transversal: angles between E~, and E, ~, 
are greater than 0o for/z-almost y ~ U(x)). 

(b) The family of LSMs yS(z) [LUMs yU(z)] of the same dimension 
and I),i(z)l > ro for some r0 > 0 is absolutely continuous restricted to U(x). 
Roughly speaking, this means that for any two submanifolds W1 and W2 
transversal to the stable foliation, vw, (A)=0  implies that Vw,_(p(A))=O. 
Here v w denotes the measure induced on W by the Riemannian metric p 
and p is the so-called holonomy map from WI to W2 along the fibers y~(y). 
For details see ref. 14, I1.4. 

3. STATEMENT OF CONDIT IONS AND M A I N  RESULTS 

We now assume additional properties on the set of singularities, its 
evolution by f and f - ~ ,  and on the hyperbolicity of the system (that is, on 
the quadratic fotrn Q). 

3.1. d im  M = 2. From here on, we will assume that d = dim M = 2. 
s u Then, ~,S(y), yU(y) are C r-~ curves and Ey, Ey have only one direction. All 

the conditions can be formulated for d > 2, but the proofs of the theorems 
- - in  their actual version--are valid only for d =  2. See Remark 3.14. 
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In TxM, provided with the Riemannian inner product, we can take an 
orthonormal basis. I f  (dr, d~o) are the coordinates of a vector with respect 
to this basis, then 

Q.,(dr, d~p) = C(x) d~o 2 + O(x) dr dcp 

and the unstable direction is close to dr = 0. 
The sets and distances defined in the following paragraphs are needed 

to bound the measure of singularity regions. 

3.2. D e f i n i t i o n s .  Suppose that conditions of Theorem2.1 are 
satisfied. For any y e M, ff is a decreasing (increasing) submanifold by y if 
it is C ~, ye f# ,  and tangent vectors at any point w ~ f f  are in C w (C~v). In 
some papers, decreasing (increasing curves were called contracting 
(expanding) curves. 

A Ct-curve y is m-decreasing (m-increasing) for m >~ 1 if f "  ( f - " )  is 
continuous on y and f ' y  (f-my) is decreasing (increasing). m-decreasing 
(increasing) curves do not intersect S ..... o (So.m). 

3.3. D e f i n i t i o n s .  S(y) and U(y) are defined for /z-almost every 
S U S, U s y~M. For such y, let v.,,~S(y), v~,E U(y), Iloy II = 1, and b=by= IQyv;.I/2. 

For any A c M ,  ~ - ( y ,  A) is the union of decreasing curves joining y 
with some point of A, such that tangent vectors at any of its points w are 
in C,S b. 

The technical restriction on the decreasing curves (we do not take all 
the decreasing curves, but those whose tangent vectors are not too close to 
the boundaries of C,~ ) is required for proving ergodic properties in ref. 24. 

Then we define a very well adapted "stable distance" a -  from y to A 
on decreasing curves, with the 1" [ pseudonorm: 

if ~ - ( y ,  A ) = ~ ,  ~r-(y, A ) =  1 

if N-(y ,A ) r  a-(y,A)=inf{l(Cg).cge~-(y,A)} 

N+(y ,  A) and a+(y ,  A) are defined using unstable spaces and increasing 
curves. Finally, we define 

U~(A)={y:a+-(y~A)<~t}, U~(A)=U+(A)uUT(A) 

In fact, U,(A) is the t-neighborhood of A with the "distance" defined by Q 
on increasing and decreasing curves. 

3.4. D e f i n i t i o n s .  For any i >  0 and x in an increasing (decreasing) 
curve 7, we define the local coefficient of expansion (contraction) under the 
action o f f  i as the limit, when l(Tx) goes to zero, of l(f~Tx)/l(Tx), where 7x 
is any curve by x contained in 7- In an analogous way we can introduce 
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local coefficients of contraction (expansion) of increasing (decreasing) 
curves under the action o f f - " .  Here A~(x) [Ak`.(x)] will denote local 
coefficients of expansion for yU(x) [7~(x)] under the action o f f ;  ( f - i ) .  

3.5. R e m a r k s .  If ~, is an increasing (decreasing) curve, its local 
coefficient of expansion (contraction) under the action of i f ,  j >  0, is given 

j t 1 / 2 ,  by [Qfz,~((f)xu)/Q,~u] where u is a tangent vector to y at x. Thi is a 
direct consequence of Definition 2.4 and the continuity of Q. In particular, 
let Q~,~ = Q/z~(f/)" v~ '~, where j e 2v and v~ "~ is a unit tangent vector to y~'~ 
at u (zero will be omitted if it is the first symbol in jx). Then, we have 

,,~ix,,~.,~, , A/(x)  = (Qjx/Qx) 

3.6. De f in i t i ons .  (In all these definitions x is in the set of points 
in which the symbol where it appears makes sense.) Let c~ >0,  d~> 1 be 
fixed numbers. We define, for every m, n e N, 

~u,s., = {x: lQ2.Sl=l /m},  ~- = U (~-~ u ~. )o~s 
n 

F,U,;S = {x: 1/(m+ 1)<  [QU'Sl ~< I/m} 

3.7. C o n d i t i o n s .  We now introduce new conditions on our non- 
uniformly hyperbolic dynamical systems. These conditions are sufficient to 
prove the main Theorems A and B. In Remarks 3.8-3.11 we explain the 
motivations for stating some of these conditions. We also indicate the main 
points of the proofs where they are used. 

C1. The set A,, of double singularities [that is, the set of x e M  for 
which there exist n i V = n2, In`.[ ~< n, such that f " ( x )  e So ] is finite, for each 
n e N .  

C2. Let '-r (G_l) be any C 1 piece of $1 (S_1). For a n y y e ~ l  (~_,) ,  

( + )  r , , s ,  =c losc , ,  + 

( - - )  TyS_ I =clos Cy- 

C3. (Sinai-Chernov Ansatz). For v-almost every y e S _ ~  (S~) 

( + )  "lira Q(f"); ,u= +oo forevery u e C  ff 

( - )  lira I Q ( f " ) ; , s l = + m  forevery S e C y  
i t  ~ - - o o  

v is the Riemannian measure in S_t  (S~) induced by its normal. 
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C4. There exist 0 > 0, K >  0 such that/z( U,(S~ w S o u .~)) <~ Ke ~ for 
every e > 0. 

C5. There exists Ko such that for any m > 1 the number of smooth 
components of S . . . .  passing through or ending at some point x ~ M does 
not exceed Kom. 

C6. There exist el >/1, fl > 1, and n o ~ N such that: 

(a) A~(x)>f l  for every x ~ M \ S _ ~  and A L l ( x ) >  fl for every 
x ~ M \ S I .  

(b) For m>~n o the sets F~,, (F~,,) are divided into two types: 
(b~) Those for which there exists d > l  such that A~(x)>c~m a for every 
x e F ] ,  (A~_l>e~m a for every x~F~) ;  and (b2) Those for which the 
previous inequalities are true for d =  1, and there exists c2 > 2 satisfying 
e i -~ log c 2 < 1, such that each LUM (LSM) can intersect only finitely many 
of such F~,, (F],) with M<<.m<czM, for every M > 0 .  

C7. There exists L ~  I~/ satisfying fl~ =Lfl -I < 1, such that each LUM 
(LSM) intersects each F~,; s in at most L smooth curves. 

C8. There exist real numbers c > 0, 0 < ~ < 1 < r/, such that q - d~ > I, 
and if 7 u (7s) is any LUM (LSM) contained in F,~, or F,~,, with boundary 
points x, y, then: 

u , s  (a) ]Q~,S Qy ]~<c/,(y~)and [Q~'~-Q.,~,'~I<~cl~(y~) �9 

(b) I D ( y ) / D ( x ) - l l  <cl6(~ ~'~) (see 3.1). 

(c) I h ( x ) - h ( y ) l / h ( y )  <<.cl'~():'~). 

3.8. R e m a r k s .  (a) Conditions C1-C3 jointly with I t (UT(So )w  
+ + U, (S O ) )<Ke ~ (K, e, and 0 as in C4) are sufficient to prove the 

K-property for our system. In ref. 24 we state this result with 0 =  1, but 
the restriction is unnecessary, as can be seen following the proof of the 
so-called Tail Bound Theorem. See ref. 23, w and ref. 16, w 

(b) The present fourth condition includes a new set whose e-neighbor- 
hood (with the pseudometric) must be e~ (with the/z-measure). 

3.9. Remarks. (a) C1 can be presented in other versions. For 
example, we can impose the transversality between So and S_+,,. Indeed, 
this assumption (jointly with C2 and the continuous dependence of C_ + on 
x) implies C1 and could be simpler to prove. 

(b) We use Sl (S_~) instead of So ~ in C2-C3 only to avoid some 
unimportant technical problems in the definition of Q, for y e S~. 
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(c) C2 can be deduced from the following 2' condition: TyS  + c 
clos C~ +, (Ty S O c clos C:7) for any y in C l-smooth pieces of S~-(S o ). But 
this condition is in general not satisfied. Condition C2 is commonly fulfilled 
and very simple to check. 

(d) If we want to prove (nonuniform) hyperbolicity, we need 
exponential growth of Q/z-almost everywhere. C3 states a weaker condi- 
tion on this growth at points of singular submanifolds. It seems to be the 
weakest requirement that allows us to prove local ergodicity in our systems 
with "good" quadratic forms. Our condition C3 is like the weaker Ansatz 
established by Sinai and Chernov for semidispersing billiards (ref. 28, 
p. 194). Chernov (~~ modified this presentation because his "monotone" 
metric does not satisfy any continuity condition: he must claim the 
increasing property all over a neighborhood of y E S_ 1. 

(e) The bound in C5 for the number of discontinuity curves passing 
through each point is required for the construction of pre-Markov parti- 
tions. This condition was introduced for billiard systems in ref. 6. 

3 . 1 0 .  R e m a r k s .  (a) C6(a) establishes a kind of uniform hyper- 
bolicity. This restriction is not necessary to prove the K-property of our 
systems, but in the construction of the Markov sieve, we will use it 
repeatedly. It seems to be difficult to prove good rates of mixing not using 
some kind of uniform hyperbolicity. That is, we suppose that the non- 
vanishing of Lyapunov exponents is not enough to obtain good bounds on 
the decay of correlation. 

(b) This restriction on the nonuniform hyperbolicity can be avoided 
by reducing the phase space and introducing a derived map 9 7 related to the 
original f This derived map j7 may have more singularities and both must 
satisfy conditions of Theorem 2.1 and C1-C8. Smaller phase spaces and 
derived maps were naturally introduced for dispersing (Sinai) billiards with 
neutral components (segments) of the boundary. The "new" singularities 
were particularly well studied in the case of Bunimovich's stadium (see, for 
example, refs. 2 and 3). In a circular billiard table, the Pesin region of the 
billiard map has zero measure and the coefficients of expansion and con- 
traction o f f "  (for any n) are not bounded away from one. But when two 
semicircles are separated--creating a stadium--a derived map can be 
introduced considering only the last hit in each semicircumference. 

(c) C6(b) establishes that the values of the expansion (contraction) 
rates must be very large at points where the value of the quadratic form is 
very small in unstable (stable) directions. This condition is very important 
because, for example, the strips F,~ might be very narrow and then the 

~ .  o r .  This is not unstable fibers might be fractioned too much by ~" m, ~" re+l" 

822/80/5-6-19 
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good because we need some kind of uniformity in the lengths of our frac- 
tioned manifolds (see 5.1 and 6.4). This problem is avoided by assuming 
that they expand drastically in ~-~ (by more than clmd). 

(d) Even more, if the exponent d is equal to one, additional condi- 
tions are needed. We have selected the condition satisfied by Bunimovich's 
stadium (see ref. 7, Lemma 2.3 and Appendix 3). But they may be presented 
in other forms that are satisfied by specific dynamical systems, and are also 
useful for proving the last part of Theorem 6.3. In ref. 7, Appendix 3, a 
second version of the needed condition is used. 

(e) C7 also plays an important role in the proof of Theorem 6.3. 
Usually L = 1, and so fl must only be greater than one. 

3.11. Remarks. (a) Conditions included in C8 are related to 
H61der-regularity of the quadratic form Q and the density h of the measure. 
They are very important in the proof of Theorem 5.4. They allow us to 
apply a kind of mean value theorem for the measure of homogeneous 
parallelograms (Lemma 4.8). 

(b) N. Chernov kindly provided a simple example which shows that 
regularity conditions on Q are necessary to prove the estimations contained 
in 5.6 and 5.7. Consider the baker transformation on the unit square M, 
defined by f(x, y) = (2x, y/2) for x ~< 1/2 and f(x, y) = (2x - l, y/2 + 1/2) 
for x > 1/2. Then 

f is hyperbolic and preserves the Lebesgue measure. Let Q be the quadratic 
form Qp(u)= q(p)(u~-u~2,), u= (Ux, Uy)E T~M, with q a continuous func- 
tion with a small range: 0.9 < q(p) < 1.1. If q oscillates wildly, the estimates 
in 5.6 and 5.7 may fail. 

3.12. The Cardioid. In focusing components of hyperbolic 
billiards, the rates of expansion and contraction are not uniform: they 
degenerate on short trajectories. 

In these cases, the space M is obtained by eliminating some curvilinear 
triangles. The lines q~ = +n/2 are sides of these triangles (~o is the angle 
between the interior normal to the boundary and the vector of the trajec- 
tory, and r is the arc length of the boundary; see ref. 24, w 

Restricting our analysis to the billiard in the cardioid, we observe that 
the main computations needed to verify conditions C1-C4 were done in 
ref. 24, w 

The phase space must be reduced in such a way that in the "new" M, 
the "new" derived map f satisfies C6(a), with the quadratic form Q used in 
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the verification of  the previous conditions. If  f is the billiard map, we 
obtain )? as a finite power o f f : y ( x ) = f k ( X ) ( x )  with k depending on the 
phase point x e M. It is simple to show that C5 is satisfied by this f It is 
not difficult to verify conditions C7 and C8, since 

Qx( dr, dq~) = 2 cos q~(x) dr dq~ - [cos q~( x )/K( x ) ] d~o 2 

h(x) = cos ~o(x) 

We suppose t h a t i t  may  be arduous to verify other conditions of  3.7 
for this f The difficulties seem to be similar to, but are not  the same as, 
those that appear in the stadium. In the latter case there is no hyperbolicity 
between bounces on the semicircumferences; in the cardioid such (non- 
uniform) hyperbolicity exists. 

It is very important  to remark that fl in C6(a) can be as close to 1 as 
we want. Then, the reduced space M can be close to the original phase 
space as much as we need. 

3.13. Statistical Properties. Since/1 is an invariant measure for 
f, every measurable function F on M defines a stationary stochastic process 
with discrete time: X,, = Fof" ( x ) ,  n ~ Z. The main results of  this paper are 
on statistical properties of these processes that play important  roles in 
applications of  hyperbolic dynamical systems with singularities. The results 
refer to mixing rates of  the process and include, as a consequence, a central 
limit theorem. 

Here ( . )  will denote the averaging with respect to the measure 
tt: ( F )  = ~ F(x) dl~(x). Let .V' denote the space of  complex-valued piecewise 
H61der continuous functions on M. If M =  0~=~ Ni, where the sets Ni, 
i = 1, 2 ..... K, are separated by a finite union of  compact  smooth curves, 3 '  
is defined by 

5 ~  {F: m--* C: [F(x)--F(y)[  <. Cf[p(x, y)]~ for some co> 0 

and any x, y s N;, i = 1, 2 ..... k} 

For  example, Ni can be the domains where f - + "  are continuous for fixed 
m > 0 .  

Theorem A (Rate of  decay of correlations). If  the conditions of 
Theorem 2.1 a n d ' C 1 - C 8  are satisfied on a two-dimensional M, then, for 
any two functions F, G e 5~ and any n/> 1, 

l( F o f " .  G)  -- ( F )  ( G )  I <<- C(F, G) exp( - a x/~) 

where C(F, G) > 0 depends on F and G, and a > 0 is a constant. 
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T h e o r e m  B (Central limit theorem). Under the conditions of 
x",,- l Fofi Then TheoremA; for any F E ~  and n~N,  let S , ( F ) = ~ , . =  o 

n i 2"] 0.2 Zi=_,,[(Fof .F) - ( F )  converges to =0.2(F) >~0 and, if 0-:/:0, 

{~S,,(F)-n(F)<z}) 1 
ll\~' ~ - ~  ---*~I~ooe-"2/2du as n - , + ~  

(convergence in distribution to the standard normal law). 

3.14. R e m a r k s .  (a) The decay of correlations is only subexponen- 
tial. Everyone would like to have an exponential decay (<2") ,  but it seems 
that the influence of singularities slows down the decay of correlations. The 
influences and relations between hyperbolicity and singularities were 
discussed in ref. 9, w and ref. 7, w 

(b) The quantity 0.'-. of Theorem B is equal to zero if and only if the 
function F is cohomologous to zero (coboundary); this means that there 
exists G ~ L, e2(M.fl, p) such that F =  G o f - G .  See ref. 13, Chapter 18, w 

3.15. R e m a r k s .  Kolya Chernov has sketched a proof of the same 
statistical properties for a multidimensional Lorentz gas. (' ') In this case 
condition C5 must be strengthened (number of smooth components of 
S . . . . . .  meeting at any point x e M cannot exceed a constant Ko). The new 
condition is not satisfied by other usual billiard systems. I suppose that his 
proof works in our "abstract multidimensional systems" with this modified 
condition. 

The main modifications in the proofs concern the theorems on the 
evolution of locally invariant manifolds and the construction of Markov 
sieves (this is coarser and simpler than the one done for two-dimensional, 
nonuniformly hyperbolic systems). 

4. M E A S U R E  OF P A R A L L E L O G R A M S  

If x, y~M, we will always assume that 7"(Y)c~Ts(z) consists of at 
most one point. If the LUMS or LSMs are too long, we introduce some 
more dividing curves in M. If it exists, we put 7"(Y)n ?'S(z) = [Y, z]. For 
B, C=M, let [B, C] = {[y,  z]: y~B, z~C} and 7] 'S(x)=A nT"'S(x). 

4.1. De f in i t i on .  A parallelogram is a subset A c M  such that 
p(A) > 0  and for any two points y, z~A the point [y,  z] exists and again 
belongs to A. 

A parallelogram is obtained intersecting a family { 7 u} of LUMs with 
a family {),s} of LSMs so that each )ju intersects each 7~: the parallelogram 
has the structure of a direct product and A can be represented in the form 
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Ao ~ u ( x o )  

Fig. 2. Parallelogram A in an "ambient" parallelogram A0, and the coordinate axes 
~'"(Xo), ~'~(x0). 

A =  [y~(Xo), )'~(Xo)] for an arbitrary point xoeA.  If x o is fixed, yU(x0), 
),'(Xo) will be called coordinate axes of .40 (see Fig. 2). As a consequence of 
the Pesin method of constructing invariant manifolds the limit (in the C O 
topology) of a sequence of LUMs and LSMs can only be a LUM or a 
LSM. Then, the closure of any parallelogram is again a parallelogram. 

4.2. D e f i n i t i o n .  We say that a subparallelogram C c A  is 
u-inscribed (s-inscribed) in A if 

y ~ ( x ) = y ~ ( x )  [resp. y ~ ( x ) = 7 ~ ( x ) ]  for e v e r y x E C  

4.3. D e f i n i t i o n .  A quadrilateral is any domain Q in M, bounded 
by two LUMs (called the u sides, whose union is 0UQ) and two LSMs 
(s sides, whose union is O~Q), in alternation. 

4.4. D e f i n i t i o n .  For any parallelogram A the minimal closed 
quadrilateral containing A is called the support (carrier) of .4; it is denoted 
by K(A) and the u and s faces of A are taken to be those of its support. 

4.5. D e f i n i t i o n s .  We say that the LUM ~,~ (LSM y~) is stretched 
on the quadrilateral K (parallelogram A) if its endpoints are precisely on 
the s faces (u faces) of this quadrilateral (parallelogram). 

A parallelogram is said to be maximal if it intersects all the LUMs and 
LSMs stretched on its support k(A). 

4.6. Measure of Parallelograms. The/~-measure of sufficiently 
small parallelograms are approximately equal to/~(A) ~ 2(A) h(x) for some 
point x E A (see the first paragraphs of Section 2). 

Suppose now that ~kU(x)-CS(x) is the angle between 7"(x) and yS(x) 
at the point x, measured with the Riemannian inner product. This means 
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that (v~, v~) = cos[~OU(x) -- ~S(x)] (see 3.3). If the point x ~ A is fixed, we 
may write 

2(A) ~-p(7~(x)) p(7~(x)) [sin[ ~"(x) - -  ~S(x)][ 

Using the final relation in 2.5, we obtain 

l(7](x)) l(7~(x)) [sin[~U(x)_ ~ ( x ) ] ]  h(x) 
m( A ) ~- ( Qxv~) ,/2 i Q,,o~xl ,/~ 

Consider now a parallelogram A included in an "ambient" 
parallelogram Ao. For a fixed Xo ~ Ao we consider the canonical projections 
F ] ,  F~ ,  of A onto the coordinate axes 7"(xo), 7S(Xo). Once more we have 
A = [ r  5, r~,] .  

If we partition ~,"(x0) and 7~(xo) into subsegments A~' and A~, their 
"direct product" [A~, A}] gives a partition of A into parallelograms A u = 

Making up the integral sum p (A)=~ /z (Ao)  and passing to the limit, 
we obtain 

~A [sin[ r  h(x) dpa(x) 
/I(A) = (Q~)U2 [Q~ 11/2 

where dpA(x) denotes the derivative of the measure on A which is the 
direct product of the/-measures on ~,](x) and 7](x). 

The absolute continuity of stable and unstable families implies that 
almost every point of the set 7](x) is a density point on ),U(x) and thus the 
Jacobian of the canonical isomorphism P (Poincar6 map) of this set onto 
its projection 1-'] c yU(Xo) is defined on it. We refer this Jacobian to the 
/-length and denote it by JU(x) [J~(x) in the stable case]. Then the last 
expression for Iz(A) takes the form 

uIA) = ally) I.. dl(z) J"Ix) Ss(x) 

where yE_r], z ~ F ]  are points such that x =  [z, y] ,  and 

Isin[ ~"(x) - qJS(x)][ 
B(x)--  (Q~)la iQSl,/2 h(x) 

We remark that in the same way in which we considered qJ'~(x) - ~OS(x) 
as the angle between the LUM and LSM by x, we can regard y and z as 
the coordinates of x on the axes ?U(x0) and 7S(Xo). 

The last formula gives the measure of a parallelogram as a product on 
the metrical sense. However, it will be only useful ff we can apply a kind 
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of mean value theorem; that is, if the function that is integrated is almost 
constant. For this purpose we introduce the notion of weak homogeneity 
of parallelograms. Let % < 1 and Co be positive constants. 

4.7. De f in i t i on .  A parallelogram A o is called weakly 
n-homogeneous (n ~ ~) if the following conditions are satisfied: 

(i) IB(x)/B(y)- II ~< Coctg 

(ii) IJU'S(x)-- II ~< Co0r 

for any points x, y ~ Ao and any point x0 ~ Ao fixing the coordinate axes 
yU(xo), ~'S(Xo). 

The next lemmas follow immediately from the formula for p(A) 
and 4.7. 

4.8. L e m m a .  The measure of subparallelograms A of a weakly 
n-homogeneous parallelogram A 0 can be approximated by/za(A) = l(F j )  
l(F~) B(xo). 

This approximation satisfies [po(A)/p(A)-- 1[ ~< C~g ,  where C] = 
Cl(%, Co). 

4.9. L e m m a .  Let be A a weakly n-homogeneous parallelogram, A' 
a subparallelogram u-inscribed in A, and A" a subparallelogram s-inscribed 
in A. Then 

tu(A" nA)  lt(A') 

where C2(%, C]) (conditional measures are close). 

5. H O M O G E N E O U S  L U M S  A N D  LSMS.  
H O M O G E N E O U S  PARALLELOGRAMS 

We want to describe some definite types of weakly n-homogeneous 
parallelograms, to which Lemmas 4.8 and 4.9 are applicable. For this 
purpose it is not enough that the parallelograms have small diameters: it 
is necessary that the function B(x) does not strongly oscillate [and JU'S(x) 
do not differ too much from one] inside A and f ;A for small values of Ii1- 

5.1. De f in i t i on .  A closed segment yu(ys) of LUM (LSM) is 
homogeneous if each image f-iyU (fiys) is contained in the cosure of some 
F,~,, (F~), m=m(i), n=n(i), for every i~>0. That is, when moving in the 
direction of contraction, fJy . . . .  'jumps" from one N,~ to another one. 

In other words, the construction of an HLUM (HSLM) can be 
realized by breaking up an arbitrary LUM (LSM) at points whose dividing 

~u  (~-~,). image in the past (future) fall in the set of subdividing curves ~ ' , ,  
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5.2. De f in i t i on .  For n E N we will say that a LUM y" (LSM yu) is 
n-homogeneous if its image f,,yu (f- , ,ys)  is an HLUM (HLSM). 

An n-homogeneous LUM )," has each image fiyu, i t  71, i~< n, in the 
closure of some FU,. 

5.3. Def in i t i on .  A parallelogram A is n-homogeneous if for any 
point x of it the set y~(x) [y~(x)]  lies entirely on one n-homogeneous 
LUM (LSM). 

The closure in M of any n-homogeneous parallelogram is also an 
n-homogeneous parallelogram (see 4.1 and 2.6). 

The Following theorem establishes the expected relation between 
n-homogeneity and weak n-homogeneity. 

5.4. T h e o r e m .  n-homogeneous parallelograms are also weakly 
n-homogeneous for convenient choices of constants in Definition 4.7. 

The proof of this theorem includes evaluations of local coefficients of 
expansion (contraction) and of the Jacobians J"'S(x), and will be given 
in 5.7. 

5.5. P r o p o s i t i o n .  Let jU(x, y), yeyS(x), be the Jacobian of the 
canonical isomorphism of the LUMs yU(x) and y"(y) with respect to the 
measure / [remember that in 4.6, J"(x, P(x)) was denoted by jU(x)].  Then 

J"(x, y ) =  lim [A~(x)/A~/(y)] 
i ~ . . i -o0  

where A~(x) is the coefficient of expansion of y"(x) under the action o f f  i. 

Proof. Classical proofs of the absolute continuity of invariant 
manifolds include the evaluation of the Jacobian of the Poincar~ map. See, 
for example, w in ref. 1 for a proof of the following formula: 

S"(x, y) = lim A~(x) A~(fx)... A~(f"x) 
. . . .  A~(y) A~(fy)... A~(f"y) 

The proposition is a consequence of these considerations and Remarks 3.5. II 

5.6. L e m m a .  If the LUM Y" is n-homogeneous, then for any 
x, y s y "  and i>0 ,  the estimate IAU_i(x)/AL~(y)- 11 ~< C4c~g holds for local 
coefficients of contractions under the action o f f  -i, where C 4 and % < 1 are 
positive real constants. A similar estimate holds for n-homogeneous LSMs. 

Proof. As a consequence of 3.5 it is sufficient to prove 

tl 

I(Q~,.~) ':- (Q~)':- I(Q~<,,)~/~ (Q~),:_- i ~< c:; 
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Since yu is homogeneous, f - iyu is i +  n-homogeneous, and it is enough to 
prove that I[(QU) 1/-'- (Q~)I/'-]/(QU)I/21 <~ Cs0cg, because, if this is the case, 

n + i  I(Q~_ix)I/Z/(Q~_ol)l/2- II -%< c5% . But 

(a~,)v2-(OU)I/21 IO,~,-a2l cl.(y) 
(QU),/2 <~ ('Q~),/2 < ~ 2  

where y is the part of yU bounded by the points x, y (see C8). Now 
1/(Q~)l/a< (m + 1)v/a and the lemma will be proved if we show this claim: 
(m+ 1)v/2~c2l~-"(y) for some fi< I. Indeed, if [ALi(x)/A~_i(y) - 1[ ~< 
c4l~(y), condition C6(a) implies that l (y )~f l - " l ( f "y ) ,  and the result is true 
for % = f l - ~  (we suppose that the/-lengths of LUM are bounded by one). 
To prove the claim we observe that l(),)~c3(Q~)l/a<~c3m-"/2; then we 

" " ' l - ~ > - ( m + l ) V / 2  i f  - - 6 > 1 .  have l'~-'1(y))c~176 and l'~-'l(y) c3 ,! r I 
(The 6 in this proof may not be the 6 in C8; the important point is this last 
relation.) | 

5.7. P r o o f  of  T h e o r e m  5.4. We must prove that (i) and (ii) in 
Definition 4.7 are satisfied if A is an n-homogeneous parallelogram. For 
this purpose it is sufficient to prove: 

(a) [A~(x)/A~(y)--ll <~Cooc; for i>~0 

(b) IB(x)/B(y)- II <~ Coao 

for x, y in a single n-homogeneous LSM y [A~(z) is the local coefficient of 
contraction under the action of i f ] .  

The proof of (a) is essentially a repetition of 5.6. 
The proof of (b) is more subtle. Let t (z )=  [sin[~0~(z)-~S(z)][ (see 

4.6) and ("z") m = (Q~IQ~[)I/~-. Then 

B(x) "1 [t(x)--t(y)[ h(x) (,,y,,)1/2 [h(x)-h(y)[ ("y")~/-~ 
-~-(--~-- 1, <~ t(y) h(y) ("x") 1/2 + h(y) ("x") 1/2 

ICx")vZ-Cy")l/2 I 
+ (,,x,,)l/_~ (1) 

W e  can suppose (see 3.1) that 

Qx( dr, d~o ) = C( x ) dq~ 2 + D( x ) dr d9 

and that the unstable direction is close to dr=O. If vS~=(drs,dq~s), 
v~,'. = (dru, d~ou), are the directions of S(x), U(x), respectively, then 

QU Q~ D(x) (dru dG" ~ ~-D(x)tg[~kU(x)-~k~(x)] 
= d s/- 
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As a consequence of C6, the bounds for the first term in the second 
member o f ( l )  must be studied carefully only when t(x) and t(y) are close 
to zero. 

As v~'~ll =d~o~,,~+dr~,~= 1 and ~bU(x)-r we have that 

Isin[ ~pU(x) - tp~(x) ] I I Q.~ - Q~I 
D(x) 

Then we have 

D(y) Q~ - Q~ t(x) - t( y) "~ 1 
t(y) ~ Q U _ Q.~v 

on F~,, and from C8(b) it follows that the needed bounds for 
. OS)/(O u Q y ) -  11. But I[t(x) - t(y)]/t(y)l are those of [ ( Q ~ -  = .~ ,  ~_y - 

. . . .  oo  o u i o : - o : ,  Q"-Q-~ -Q . , ' -Qs I~  ~ + 
a~  - Q~, I a y  - a~, I Q,~, - a~, 

u I s , ~< l a x -  O~,l + ax-a~, t  
a,~, IQ~,[ 

<la2-Q~vl Ia~-a~.l 
ia~l,/z + iO~l m ~<2C4~ 

The second and third terms in (1) are bounded by similar expressions 
as a consequence of C8(c) and 5.6, respectively, jointly with condition 
C 6 ( a ) .  I 

Theorem 5.4 indicates the way to construct weak n-homogeneous 
parallelograms. But we do not know if the needed HLUMs (HLUSs) exist: 
it may be that subdividing points can densely fill each LUM (LSM). 

We can not only prove the existence of H L U M  and HLSM, but 
estimate their distribution of lengths. Let r~ [r~ be the /-distance 
from the point x ~ M to the nearest endpoint of the maximal smooth seg- 
ment y~ [7~ of H L U M  (HLSM) containing x in its interior. 

5.8. T h e o r e m .  / l ({xEM: r~176 where C6=C6(v, mo) 
> 0 and 0--O(v, too)> 0. A similar result holds for ros(x). 

5.9. P r o p o s i t i o n .  For/~-almost any x e  M, the subdividing points 
on the LUM ~,~(x) [LSM 7~(x)] partitioning this curve into individual 
HLUMs (HLSMs) can only accumulate at the endpoints of this curve. 
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Both proofs are almost the same as those of Theorem 3.10 and 
Proposition 3.11 in ref. 7. Some geometrical properties of scattering 
billiards that are used in these proofs (ref. 7, Appendix 2) are presented 
here as condition C4. 

Formula (A2.1) in ref. 7 is satisfied by our dynamical systems with 
e,, = Pofl-" for some P0 > 0. 

6. EVOLUTION OF HLUM IN THE DIRECTION OF EXPANSION 

In reading this section, the reader should consider 3.4 and 3.5 in ref. 7. 
Their first paragraphs describe exactly all the plan and the main ideas 
behind the statements and proofs: expansion prevails over fractionation 
caused by discontinuity and subdividing curves (S o and ~-). 

All the results in this section are valid for HLSMs, with n replaced by 
- n ;  we study the expansion also on HLSMs. 

We begin with a result on partitioning by discontinuities (ref. 6 and 
ref. 7, Appendix 3). 

6.1. Theorem. Let yu be an arbitrary LUM and D > 0 .  For each 
N >/0 we choose on ~u subsegments y,u such that f N  is smooth on them, 

f n  N y~ lies in a smooth component o f f "~  u for any integer n, 0 ~< n ~< N, and 
/(f"y~) <~D. Then there are numbers D > 0 ,  C > 0 ,  and 0 < 2 <  1 such that 
for all N >~ 1. 

Proof. We first write the obvious estimate l((J~y~)<~D~A~(i), 
where AN(i) is a lower bound for the local coefficients of expansion A~(x) 
under the action o f f  N. 

Since our systems satisfy C6(a), we may put Au(i)= fiN. It remains to 
estimate the number of segments ~y for a given N. Let n >/1 be a given 
integer and D sufficiently small [D<~Do(n)]. Then C5 implies that any 
LUM of length less than or equal to D intersects at most Kon discontinuity 
curves in S_,.0, and the number of segments y~ does not exceed 
(Kon)EN/,,l + 1. Then 

I ( ?  7~)<~D(Kon)EN/"]+' ~N 

We choose n such that fl(n)=fl(Kon) -1/" is larger than 1. For this n let 
;~-'=~(n). I 
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We will now obtain a result analogous to 6.1 for HLUMs.  We begin 
with a definition. 

6.2. D e f i n i t i o n .  Let y" be an arbitrary H L U M  of length l(y ~) = p, 
and D any positive number. For each n >/0, yi~,,, i= 1, 2 ..... are the sub- 
segments of y~ that are sent by f "  into homogeneous segments of/-length 
greater than or equal to D. Then we define the relative fraction of points 
in yu that in the first N steps are sent at least once in an H L U M  of/-length 
greater than or equal to D: 

p n.r~ N) = l( y N)/ l( y ~) 

6.3. Theorem (Rate of expansion). There are a positive number D 
and a function fl(c), f l ( c ) ~  0 as c ~ +0% independent of y~ and its length 
l(Y ") ~ Po < 1, such that for any c > 0 we have 

po.ro(N)> 1 - f l ( c )  for N =  - c l o g p  

Proof. By analogy with 6.1, we denote by y~ the subsegments of y" 
such that f " y ~  is an H L M  and ,, N l ( f  Yi ) <~ D for every 0 ~ n ~< N. The 
estimate at the beginning of the proof of 6.1 remains valid. The number of 
segments y~ can be infinite for subdivision by ~ ,  with rn>~m~. This 
number rn I will be determined below. 

Using C6 and C7, we will obtain an estimate for AN(i). We assume 
that the images of the LUM y~ during the first N iterations fall k~ times 
in sets F~, of the first type [see C6(b)],  with indices m>~ml ~>n0; and k 2 

times in sets F~, of the second type, also with indices m>~ml >~no. We 
denote the corresponding indices by l I , 12 ..... lk~ t> m l and Jl,  J2 ..... Jk,  ~ m l. 

Then, the following estimate holds: 

kl k2 
,C R N - k l  --k2~kl +/-'2 Au( i ) - .~ .  ~l I-I l ,  I-I Jk 

k = l  k = l  

We have not taken into consideration the influence of the discontinuity 
curves and subdividing set ~,~, for rn<m I . Suppose that an LUM of 
length D and its future images during n iterations do not intersect any 3z'~, 
with m>~rn~. It follows from C5 that these are constants K~ > 0  and 
Do--Do(n, rot) such that if the length D of the given LUM is less than Do, 
then its image intersects at most K~ n discontinuity curves and subdividing 
sets ~'~, with m <rn I . Now, K l may be larger than Ko in C5 as an influence 
of these subdividing sets. 
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Then, for D <~ D(n, m)  and ml/> no we have 

l 7 <<- ~'. DLNcFk'-k2fl  -N+k'+k2 1-I l ;  a 1-I J [ ' ( K x n )  tN/'J+l (2) 
kl,k2 ~ 0  k =  1 k ~  l 

In order to simplify the understanding of  the estimations, we will discuss 
separately the cases k 2 = 0 and k 2 > 0. If k 2 = 0,  

l 7 <<. ~. c~-k'DL N m a fl--N+k'(kln)[N/"]+l 
k l  ~ 0  m ~1 

As d >  1, we may choose rn~ such that the series converges to a number  
smaller than f l - l .  Since fll = L f 1 - 1 <  1 (C7), we have 

N 

l (7N)>~p-DCflUl(Ktn)  tN/"]+~, with C =  Y' c~-k~<~N+l 
k I = 0  

Then, as in the last part  of  6.1, we may choose n such that for some 
0 < 21 < l, po.r,(N)>i 1 - 2 ~ / p .  If  c = - N / l o g p ,  we have the inequality of  
the statement for fl(c) = p - "  log ~ - l 

If  k 2 > 0, we will use the fact that condition C6(b2) established that a 
single L U M  intersects only finitely many F,~ of  the second type with M ~< 
m <~ C2M. Such a L U M  gives a contribution to (2) smaller than 

c2~ 1 
- -  "~ c i t log c2 

n = M  Cl H 

Finally, the total contribution of  the factor depending o n  k 2 in (2), after 
the N iterations, is not  essential because C l  I log c2 < 1. II 

This theorem also can be stated in the following way: f "?"  consists of  
at most a countable number  of  H L U M s  called components.  Let r , ( f " x )  be 
the/-distance from f " x  to the boundary  of  its component.  Then 

l({x e 7": max{r, , ( f"x):  O<~n<~N} >~D})/p>~ 1 --fl(c) 

for N =  - c  l ogp  (D, fl, and c as in the previous statement). 

6.4.  T r a n s i t i v i t y .  Consider an H L U M  7 u of length of  order one. 
Then almost all its points expand and the homogeneous segmems of  its 
images begin to fill M. General considerations on the mixing property 
predict that  for large n, the homogeneous segments o f f " 7 "  are Uniformly 
distributed on M. But we need, and can prove, only that the density of  
filling by these components  is asymptotically bounded away from zero as 
r/----~ + o o .  
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6.5. Definit ion. Let yu be an arbitrary HLUM, p = l(~U), and A0 
an arbitrary 0-homogeneous maximal parallelogram (see 4.5 and 5.4). For 
each n ~> 1 we choose inside ~," subsegments ~i~,, whose images f"~i~,,, are 
stretched on the parallelogram Ao. We consider the numbers 

that measure the /-percentage of y" whose image by f "  is an HLUM 
stretched in A o. 

6.6. T h e o r e m  (Transitivity). There exist 6o=6o(p, Ao)>O and 
no= no(p, Ao) (depending on A o and the length p of ~", but not on its 
position) such that p,(),", Ao)/> 60 for all n >/n o. 

The proof of this theorem is the proof of Theorem 3.13 in ref. 7 and we 
will not repeat it here. We will only state some of the assertions used in the 
proof. 

From 5.1 and our version of the fundamental theorem of Sinai- 
Chernov, ~'-3"24~ we can obtain the following result. 

6.7. L e m m a .  Let ), be an arbitrary increasing curve in M. Then 
through almost every x ~ y there passes an HLSM y~ 

Using this lemma and the absolute continuity of stable and unstable 
foliations (see 2.5), we can prove the existence of a parallelogram that is a 
dense part (with positive parameters e and d< 1/10) of an HLUM y". 

6.8. P r o p o s i t i o n .  In a neighborhood of ~," there exists a paral- 
lelogram A1 with the following properties: 

1. A~ is 0-homogeneous and maximal. 

2. y" intersects both s faces of A~ and the points of intersection have 
distance larger than dl(y") to the endpoints of~,". 

3. For each HLSM yl stretched on A~ (see 4.5), the point of inter- 
section y"c~ ys has distance larger than dl(~, ~) from the endpoints of?  s. 

4. The density of the parallelogram A~ on every HLSM ~,s stretched 
on it [I(A~ my~)/l(y~)] is at least 1 - e l .  

6.9. L e m m a  (On finite collections of dense parts). For any p > 0 ,  
e~>0, and dE(0,1/10)  we can choose in M a finite collection of 
parallelograms such that for each HLUM of length >~p, one of these 
parallelograms is a dense part with parameters ~ and d. 

We fix de (0 ,  1/10), a sufficiently small ~1 >0,  and a dense part A~ 
with parameters e~ and d of ~,u. Let ~," and Ao be as in the condition of 6.6. 
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Absolute continuity of stable and unstables foliations implies that 
almost any point x e A o is a density point of the measurable set y~o(x). 
Then, for any e2 > 0 there are a p~ > 0 and a subset -4o c Ao of nonzero 
measure such that on any HLSM ? intersecting Ao and /-length less than 
p~, the parallelogram has density p(? ~ Ao)/p(?) greater than 1 - e 2 .  We fix 
a sufficiently small e2 and the corresponding set (not necessarily a 
parallelogram) -4o- 

f"A l consists of finitely many 0-homogeneous parallelograms for any 
n/> 0. We denote by A~ . . . . . . .  Ak~ , , ) ,  n those parallelograms that intersect ,4o. 
Let y~,, be the projections under the action of the Poincar~ map of Ag., on 
f"y~. Distinct parallelograms A,,,, are projected onto distinct homogeneous 
components y~,,. 

6.10. kemma. Each yi~,, 1 ~<i~k(n), intersects both s faces of the 
parallelogram Ao, provided that n is sufficiently large [n >~ n'(Ao, e~)] and 
el, e~ are sufficiently small. 

The proof of 6.6 follows from 6.10, 5.6, 4.6, and 6.9. 
Successive application of 6.3 and 6.6 leads to the following general 

assertion. 

6.11. T h e o r e m .  Suppose that the HLUM y~ and the paral- 
lelogram Ao satisfy the conditions of Definition 6.5. Then 

P,,(~,Ao)>Jl forall n > ~ - - C l o g p + n  l 

where the quantities Jl =J~(Ao) and nl =nl(Ao) depend only on Ao and 
> 0 is a constant. 

7. C O N S T R U C T I O N  OF THE M A R K O V  SIEVE 

The purpose of this paper is to construct a finite partition of M that 
satisfies a kind of strong mixing condition in the sense of Ibragimov 
(ref. 13, Chapter 17, w This result on convergence toward equilibrium is 
the basis of the proof of Theorem A. The construction will be done in the 
following three sections. 

7.1. Definit ion. A Markov sieve (lattice) with parameters n, N is 
a finite partition "of the space M, ~tn.N= { V o, V1 ,.-., V~}, where N >  n > 0, 
l=l(n,N),  p(Vic~ Vj)=0 for i r  and U Vi=M,  having the following 
four properties: 

P1 (Sizes). diam V,.~< e -n for all i>~ 1 (V 0 does not participate in this 
estimate). 
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P2 (Measure of marginal set). lu(Vo) <~Ne-". 
P3 (Markovian approximation). For any integers k > m >  I and 

1 ~< i~ < i2 < . . .  < ik ~< N as well as for indices j~, Jz ..... Jk taking values from 
1 to I(n, N), the following relation holds between conditional probabilities: 

] l ( f i l V j t f )  f i 2V j~  o . . .  f l  f i , , - I V j , , _ l / f i , , , V j ,  (-~ . . .  ('h f i k v j k )  

=p(f"Vj, nf'2Vj,_n ... nf"'-'Vj,,_,/f"'Vj,,)(l +A) (7.1) 

when Izll .< Cs~g for some C5 = Cs(0to) (see 4.7). 
Let ~ = { 1 , 2  ..... I}. For any k>~l and i ~  we choose a subset 

R~(k) c ~  such that j~R~(k) if and only if for some positive constant flo 

p(fkV~n Vj) >~ floP( V~) p( Vj) (7.2) 

Then, we will say that i ~ R (k )c  ~ if and only if 

P4 (Regularity). 

p(Vj)> l - e - "  (7.3) 
j~Ri(k) 

For each k/> Don we have 

p(Vi) > 1 --Are-" (7.4) 
iER(k) 

where D O is a positive constant. 

7.2. R e m a r k s .  (a) N is the length of the time interval on which 
we will approximate our stationary process {X~} (see 3.7) by a process of 
Markov type (see Section 1). We will not impose further restrictions on N 
and n, but it will be useful to keep in mind that we are interested in the 
case when n - N~'-~ + oo for some ? < 1. 

(b) P3 establishes, up to a factor 1 + A, a kind of Markov property 
for { V I , . . . ,  Wl}. It is easily proved that the same relation holds for N~> i~ > 
i_ ,> . . .  >ik~>l.  

(C) P4 establishes a kind of strong mixing rate in a smaller time 
interval: (7.2) guarantees a certain degree of mixing after k steps, which 
holds for the great majority of pairs of indices i, j. More precisely, we 
consider those V~ such that fk Vi are "flo-mixed with a lot of sets Vj," and 
then (7.4) establishes that for values of k sufficiently n-large, the measure 
of these Vg is close to 1. 

7.3. Construction of the Markov Sieve. This is done in three 
steps. In the first step (Section 8) we construct a pre-Markov partition that 
is a covering of M by polygons whose boundaries are segments of LUMs, 
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LSMs, and discontinuity curves. In the second step (Section 9) we turn the 
pre-Markov partition into a pre-Markov sieve formed by parallelograms. It 
is a rough approximation to the Markov sieve. Finally, we give two 
modifications of the pre-Markov sieve and obtain the Markov sieve. 

8. PRE-MARKOV PARTITIONS 

For the sake of completeness we recall some elements on Markov 
partitions. 

8.1. De f in i t i on .  For any pair of parallelograms A,B and n > 0  
(n < 0) we say that the intersection f "A  n B is regular if it consists of 
parallelograms u-inscribed (s-inscribed) in B, and its preimage A n f - " B  
consists of parallelograms s-inscribed (u-inscribed) in A. (See Defini- 
tion 4.2). 

Similarly, for any pair of quadrilaterals P, Q and n > 0, we say that 
their intersection f " P  n Q is regular if it consists of quadrilaterals with s 
faces on OQ, and its preimage P n f - " Q  consists of quadrilaterals with u 
surfaces on OP. 

8.2. De f in i t i on .  A Markov partition f o r f i s  a partition (rood 0) of 
M into parallelograms {A;}, i e N, such that: (i) every parallelogram lies 
in a connected domain of N on which f and f - ;  are continuous; and 
(ii) f "A  i n Aj intersects regularly for every i q: j  and n :/: 0. 

8.3. C o n j e c t u r e .  If a dynamical system f satisfies the hypothesis of 
Theorem A, then for any e > 0 there is a Markov partition for f whose 
elements have diameters less than e. 

There are good reasons to suppose that this conjecture is true. The 
first one is that the adaptation that we have done in this paper of the 
methods of ref. 7 can be done also for ref. 6, where the Markov partition 
was constructed for dispersing billiards and the stadium. 

The second reason is that Markov partitions have been constructed 
independently for nonuniformly hyperbolic systems with singularities by 
Kriiger and Troubetzkoy/15~ The conditions satisfied by the systems 
studied in ref. 15 are similar to the hypothesis of our Theorem A. 

In fact, as was noted in ref. 7, the proofs of some important statistical 
properties of these dynamical systems do not require tile construction of a 
Markov partition, but of a kind of approximation to it by a finite number 
of sets: the Markov sieve. 

We begin its construction by introducing a partition into curvilinear 
polygons. 

822/80/5-6-20 
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8.4. De f in i t i on .  Let m~>~m>~l be integers, and O<e<eo(m) 
arbitrarily small. Let X0 = X0(e) be a partition of M into curvilinear 
polygons P~ ..... Pk (the boundary of each polygon consists of a finite set of 
Cl-smooth curves). It is a pre-Markov partition for f "  if: 

(i) The boundary 0~o = U OPi is the union of S_,,,.m, and a finite 
collection of LUMs and LSMs. Respectively we denote these sets by 0~ 
0U~o, 0'~o. 

(ii) f'~(O'vffo) c O'A/o, f -m(O"NO) c 0"~0. 
(iii) Any segment of an LUM (LSM) that is part of 0u~o ( 0 ~ o )  

ends either in 0~ or strictly inside some LSM (LUM) that is a part of 
0 ~ o  (0"Xo). 

(iv) The sides of the polygons Pe~A/~ lying on LUMs ad LSMs are 
greater than k~e and less than k2e (k~, k2 are constants determined by m). 

The construction of a pre-Markov partition will be done in three 
stages, following ref. 6, w 

Let N =  M\S ,  as in the first paragraph of Section 2. The quantities m 
and co(m) that appear in the definition of pre-Markov partitions are chosen 
during the construction process. 

8.5. Proposition (Initial partition Go). In N we can choose a finite 
system of m2-increasing curves FJ" = { y+: 1 ~< i ~< I~-} and a finite system of 
m2-decreasing curves F 0 = {YT: 1 ~< i~< Io}  such that, for m2 = m + I, we 
have the following: 

(a) 2e<~l(y)<~2-1e for every y e F ~ - w F  o. 

(b) The curves i n / ' ~  ( / ' o )  lie outside Uz~(So.,,,2) [ U~(S_,,,..o)]. 

(c) (Consistency). The endpoints of each curve in F o (F~-) lie on 
two curves i n / ' ~  (F  o). 

(d) (Density). Any 1-decreasing (1-increasing) curve of/-length 2-~e 
intersects at least one curve y e F o (y r in such a way that the point 
of intersection divides y into segments of /-length at least 2e. Here 
2 =  (200K0m) -~ depends on the constant K0 introduced in C5. 

Proof. It is analogous to the proof of Proposition 2.1 in ref. 6. We 
must be careful only in the selection of the values of c~, c2, and 2. Now c~ 
depends on the upper bound of Q and the angles between 1-increasing cur- 
ves and m2-decreasing curves at points that are not close to the sets of 
singularities; these values are controlled by hypothesis (i) in Theorem 2.1. 
Now c z and 2 depend on the fact that for any m > 0  there is an eo(m ) 
such that any e0-Riemannian disk in N intersects at most Kom curves 
i n S  . . . .  . | 



Dynamical Systems with Singularities 1235 

8.6. L e m m a .  If  m is such that/~m > ~.-3, then in N we can choose 
a fmite system F ~  + ( F ~ )  of segments of LUMs (LSMs) satisfying the 
following conditions: 

(a) VT"~F'~, there exists ) , 'e / - '~  such t h a t f : ~ m T c 7  '. 

(b) Between the curves F~oo and / ' ~  there is a natural corre- 
spondence under which corresponding curves remain at a distance of at 
most 22e/100 from each other. 

(c) (Consistency). The endpoints of each curve 7 E / ' ~  lie on two 
curves in F ~ .  

(d) Any 1-increasing (1-decreasing) curve of/- length ~ - t e  intersects 
some segments of an LSM in F ~  (LUM in + " Foo), moreover, the point of 
intersection divides this segment into two pieces of/-length not less than 2e/2. 

This lemma and the following proposition are proved in w of ref. 6. 

8.7. P r o p o s i t i o n .  The partition of N determined by the system of 
curves F+~, F~, and S . . . .  is finite and pre-Markov f o r f  m, ml =m.  

This proposition finishes the second stage of the construction. The third 
stage is resumed in the following proposition; it is proved in w of ref. 6. 

8.8. Proposition. Let F -+ be the system of curves consisting of 
the curves ~, e / ~  and the smooth components of their images _F-+" 7. The 
partition ~ determined by F -+ and the discontinuity curves S . . . . .  is finite 
and pre-Markov for f " ,  rn~ = m. If an element A e ~ does not border with 
S . . . . . . .  then it is a curvilinear quadrilateral bounded by two LUMs and 
two LSMs alternating with each other. If A does border with S . . . . .  it is 
bounded by segments of LUM, LSM, and discontinuity curves such that 
interior angles do not exceed 180 ~ . 

8.9. P r o p o s i t i o n .  The measure of the union of all bordering (with 
S ....... ) elements of ~ does not exceed R~K(k2e) '~, where ~ = m i n { 1 , 0 } ,  
K and 0 were determined in C4, and K is a constant that depends on m. 

Proof. Recall 4.11(d). If a quadrilateral bordering S . . . . .  is close 
to So ~, its measure is controlled by application of C4. Otherwise the 
Riemannian diameter of the quadrilateral is controlled by the bounds of 
the quadratic form Q in regions were it is continuous (see 2.4-2.5). The 
result follows frofia the absolute continuity ofp.  I 

In conclusion, we consider the partition ~ = V"_'mf;~. It is a pre- 
Markov partition for f ,  m~=  2m. It is easily seen that the measure of the 
union of all bordering sets (with S_2,,.2,,) does not exceed K~e ~, where 
K~ > 0 is a constant depending on m, and fi > 0 is defined in 8.9. 
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9. INITIAL A N D  P R E - M A R K O V  SIEVES 

The second step of the construction of our Markov sieve consists 
in the selection of an initial sieve (lattice) with good initial Markovian 
properties and very close (in measures and dimensions) to the pre-Markov 
partition ~ ~. 

9.1. L e m m a  (4.4 in ref. 7). There exists an (initial) sieve ~(e)  
consisting of a finite number of parallelograms W, one each obtained from 
an element Q(W) of ~ ,  satisfying the following properties: 

(a) (Structure). The parallelograms W e ~ ( e )  are 0-homogeneous 
and are formed by intersection of all the HLUMs and all the HLSMs 
stretched on Q(W); the quadrilaterals Q(W) can intersect only along 
boundaries. 

(b) (Measure of the remainder). If W o = M \ U { W ~ ( e ) } ,  then 
~(Wo) < ~b2. 

(c) (Markov property in one step). For any two parallelograms 
W', W" ~ ~(e) the intersections f W '  n W" and fQ(W')  c~ Q(W") either 
have measure zero or are regular (see Definitions 8.1 and 4.2). 

(d) (Density). For each W ~ ( e )  there are HLUM yut(W) and 
HLSM ys~(W), stretched on Q(W), on which W has density at least 
l - ~ t ( e ) ,  where ~ l ( e ) ~ 0  as c~O. 

(e) (Dimensions). For each W s ~ ( e )  we have diam W~<const.e ~, 
but l(yU~(W)) ~>e b2 and l(yS~(W)) ~>s b'-. 

Proof. For each nonbordering element U e ~  we consider all the 
HLUMs and all the HLSMs stretched on U (Definition 4.5). 

By intersection we obtain the parallelogram W(U). We will select 
among them the parallelograms satisfying the following three additional 
conditions. 

(AI) The quadrilateral U and its imagesf~U for Iil ~<m do not inter- 
sect subdividing curves. 

(A2) II(W(U))/II(U)> 1 - e  b'. 

(A3) l(y~S(x)) > e b2 for every point x s W. 

b~, b2 .... denote positive constants determined by the choice of v and 
mo in Section 5 and will be determined in the proof of the following 
statements. 

We define the initial sieve ~(e)  as the set of all parallelograms W 
constructed and selected above. 
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The rest of the proof is analogous to the proof of Lemma 4.4 in ref. 7. 
For proving property (b) we must use C5 instead of their Theorem 3.10 
and, in the evaluation of the measure of the parallelograms not satisfying 
(A3), we must use the arguments in the proof of our Proposition 8.9. I 

The third step of the construction of the Markov sieve consists of two 
modifications of the initial sieve. These modifications are exactly the same 
as done in ~4.3 of ref. 7. We will only describe the construction and give the 
final result. 

9.2. First M o d i f i c a t i o n .  It consists in a partition of each 
We ~(e)  to obtain n-homogeneous parallelograms. 

We consider all possible intersections 

f - " W _ , , n  . . .  n f - I W _ l  n W o n  f W l  . . .  n f " W ,  

having nonzero measure [for all possible W ~ , ( e ) ] .  We denote by 
~(e, n) the set of these finite intersections, and call it a pre-Markov sieve. 
We put Zo = M \ U { Z 6 ~ ( e ,  n)}. 

9.3. S e c on d  Modif icat ion.  It consists of a selection of a refining 
of the elements in ~(e, n) to guarantee the Markov property in + N  steps. 

For each Z ~  ~(e,  n) we define a subparallelogram 

V =  V(Z)  = {x  ~ Z: f k x  r Zo for all Ikl ~< N} 

We select those parallelograms V c  Z that satisfy the inequality 

i t (V) > ( 1 - e b6) iz(z) 

for some b6 > 0. 
For convenience of notation we enumerate all parallelograms 

Z ~ ( e ,  n) satisfying the last inequality, i =  1, 2 ..... I(e, n, N). We denote by 
�9 ~ ( e , n , N )  the set of parallelograms Vi and put V o = M \ U { V i :  l<~i<~ 
I(e, n, N)}. 

9.4. L e m m a  (4.6 in ref. 7). The system of sets #e(e, n, N) has the 
following properties: 

(a) (Structure). The parallelograms V ~ ( e , n , N )  are n-homo- 
geneous. 

(b) (Measure of the remainder). F(Vo) ~ N , e  b6. 

(c) (Markov properties in _+N steps). For any two parallelograms 
V', V" E R(e, n, N) and any k ~ 77, 1 ~< Ikl < N, the intersection f k V '  n V" 
either has measure zero or is regular. 
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(d) (Dimensions). For each parallelogram V ~ ( e ,  n, N), we have 
diam V~< const �9 e6. 

9.5. The Markov Sieve and Its Properties. We define the 
Markov sieve ~,,N as the system ~(~, n, N) for ~b~=e-", where bT= 
min{~, b2, b6}/4, and adjoin to it the set /Io. 

Properties P1 and P2 in 7.1 follow immediately from 9.5. Property P3 
is a consequence of 9.5(c) and Lemma 4.9. Finally, P4 is proved in ~4.4 of 
ref. 7 using our Theorem6.11 instead of Theorem3.19 and Lemma5.6 
instead of Lemma 3.7. 

A C K N O W L E D G  M ENTS 

This paper was prepared in connection with thoughts on the proof 
of the statistical properties of the billiard in the cardioid, stimulated by 
Ya. G. Sinai. I studied the papers by Bunimovich, Sinai, and Chernov, 
in collaboration with Arthur Lopes (UFRGS, Porto Alegre), in IMPA. 
During a short visit to Princeton University I discussed the main ideas of 
this paper with Kolya Chernov, whose sharp observations were crucial for 
its elaboration. 
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